Boolean Algebra - Worksheet 1

©2024 Chris Nielsen – www.nielsenedu.com

1. Write the name of each logic gate inside the gate (AND, NAND, NOR, NOT, OR, XNOR, XOR)

2. Fill in the table.		- 			
	gate name	NOT	AND	OR	XOR
	set notation	1	Λ	U	
	logic symbol	7	Λ	V	<u>V</u>
	Java bitwise operator	~	&		Λ

2.	Fill in the tru	ıth table.	AND	NAND	OR	NOR	XOR	XNOR
	0	0	0	1	0	1	0	1
	0	1	0	1	1	0	1	0
	1	0	0	1	1	0	1	0
	1	1	1	0	1	0	0	1

3. Complete the following truth tables.

1

1

0

a)	A	В	$\neg A$	$\neg B$	$\neg A \land \neg B$	$\neg(\neg A \land \neg B)$	$A \vee B$
Ī	0	0	1	1	1	0	0
Ī	0	1	1	0	0	1	1
	1	0	0	1	0	1	1
	1	1	0	0	0	1	1
b)	A	В	$\neg A$	$\neg B$	$\neg A \lor \neg B$	$\neg(\neg A \lor \neg B)$	$A \wedge B$
Ī	0	0	1	1	1	0	0
Ī	0	1	1	0	1	0	0
Ī	1	0	0	1	1	0	0

e) Note that the final two columns of each table show **De Morgan's Laws**. Write these two equivalencies below:

0

0

1

1

$$\neg(\neg A \land \neg B) = A \lor B \qquad \qquad \neg(\neg A \lor \neg B) = A \land B$$